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Overview 
Part 1: Quantum Computing 
§  What, why, how 

§  Quantum gates and circuits 

Part 2: Superconducting Qubits 

§  Device properties 

§  Control and performance 

Part 3: IBM Quantum Experience 
§  Website: GUI, user guides, community 

§  QISKit: API, SDK, Tutorials 
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Quantum computing: 
what, why, how 
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1st Conference on Physics and Computation, MIT 

“Nature	isn’t	classical	.	.	.	if	you	want	to	
make	a	simula6on	of	nature,	you’d	
be:er	make	it	quantum	mechanical,	
and	by	golly	it’s	a	wonderful	problem,	

because	it	doesn’t	look	so	easy.”	
–	Richard	Feynman,	1981	
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Computing with Quantum Mechanics: Features 
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Superposi8on:	a	system’s	state	can	be	
any	linear	combina0on	of	classical	states	
…un#l	it	is	measured,	at	which	point	it	
collapses	to	one	of	the	classical	states	
Example:	Schrodinger’s	Cat	

Entanglement:	par0cles	in	superposi0on	
can	develop	correla0ons	such	that	
measuring	just	one	affects	them	all	
Example:	EPR	Paradox	(Einstein:	“spooky	
ac0on	at	a	distance”)	

Quantum	
wavefunc8on	

Normaliza8on		
“Classical”	states	

Linear	combina8on	
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Computing with Quantum Mechanics: Drawbacks 
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1	 Decoherence:	a	system	is	gradually	measured	
by	residual	interac0on	with	its	environment,	
killing	quantum	behavior	
Consequence:	quantum	effects	observed	only	
in	well-isolated	systems	(so	not	cats…	yet)	

Uncertainty	principle:	measuring	one	
variable	(e.g.	posi0on)	disturbs	its	
conjugate	(e.g.	momentum)	
Consequence:	complete	knowledge	of	
an	arbitrary	quantum	state	is	impossible.	
à	“No-Cloning	Theorem”	
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Classical	bit	

Quantum	bit	(“qubit”)	

What does a quantum bit look like? 

Physical	systems:	capacitor	charge,	
transistor	state,	magne0c	polariza0on,	
presence	or	absence	of	a	punched	hole,	etc.		

Logical	states:	just	0	and	1	

Mul8-bit	effects:	none	

Physical	systems:	electron	spins,	atomic	
states,	superconduc#ng	circuit	states	

Logical	states:	|0>,	|1>,	superposi6ons	

Mul8-qubit	effects:	entanglement	
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Fault-Tolerant	QC	

Gate	model	quantum	
compu8ng:	the	future	
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Quantum Volume




Number of qubits (more is better)




Errors (fewer is better)




Connectivity (more is better)




Gate set (more is better)


How powerful is a quantum computer: quantum volume
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Quantum computing: 
quantum operations and circuits 
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Single-qubit gates 
§  Gates are described by one or more 

rotations about an axis or set of axes 
–  Pauli X, Y, Z gates: 
§  Rotate π radians about specified axis 
§  X and Y gates equivalent to classical NOT 

     -Transform |0> to |1> and vice versa 
–  Clifford gates: 
§  Permute states identified at right (includes 

Pauli gates) 
–  Arbitrary gates: 
§  Map any point on sphere to any other 
§  Typically implemented with a small set of 

well-calibrated gates, e.g. Clifford group 
plus one additional gate 

Clifford	group:	permutes	the	states	| ​
𝟎⟩,	| ​𝟏⟩,	| ​+⟩,	| ​−⟩,	| ​�⟩,	and	| ​�⟩,	iden8fied	
below	

X	

Y	

Z	
| ​𝟎⟩	

| ​𝟏⟩	
| ​+⟩	

| ​−⟩	
| ​�⟩	| ​�⟩	

= ​        +        /√⁠𝟐  	
| ​+⟩	

| ​𝟎⟩	 | ​𝟏⟩	 = ​       −        /√⁠𝟐  	| ​𝟎⟩	 | ​𝟏⟩	
| ​−⟩	

= ​        +𝒊       /√⁠𝟐  	| ​𝟎⟩	  | ​𝟏⟩	 = ​       −𝒊        /√⁠𝟐  	| ​𝟎⟩	 | ​𝟏⟩	
| ​�⟩	 | ​�⟩	
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Matrix representation of Hadamard acting on | ​0⟩ 

Key single-qubit gate: Hadamard (H)  
§  Hadamard gate: rotate 180°about X+Z axis 

–  Exchanges Z and X axes 
–  Takes classical states to equal-weighted 

superposition states and vice versa 
§  | ​𝟎⟩	à	| ​+⟩ 	 | ​+⟩	à	| ​𝟎⟩	
§  | ​𝟏⟩	à	| ​−⟩ 	 | ​−⟩	à	| ​𝟏⟩	

–  Used in almost every quantum algorithm 

§  Performs the quantum Fourier transform of 
a single qubit 
–  Classical Fourier transform: exchange 

conjugate variables describing a signal 
(e.g. time domain à frequency domain) 

–  Quantum Fourier transform: exchange 
conjugate variables describing a state 

X	

Y	

Z	
| ​𝟎⟩	

| ​−⟩	
| ​�⟩	| ​�⟩	

| ​𝟏⟩	

| ​+⟩	

X	+	Z	
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Qubit measurements 

§  Standard measurement in the 
computational basis: 
–  Collapses any superposition into one 

of the two classical states: | ​𝟎⟩ or | ​𝟏⟩ 

§  Measurement in other bases: 
–  Measurement itself is only sensitive to 

| ​𝟎⟩ vs | ​𝟏⟩ 
–  To measure in other bases, rotate first 
–  Example: to distinguish | ​+⟩ from | ​−⟩, 

apply Hadamard before measuring 
§  If state was | ​+⟩, measure | ​𝟎⟩ 
§  If state was | ​−⟩, measure | ​𝟏⟩ 

|0>	with	probability	α2	

|1>	with	probability	β2	

Ini0al	state 	 	Possible	outcomes	

Measurement	icon	
used	in	the	IBM	QX	

X	

Y	

Z	
| ​𝟎⟩	

| ​𝟏⟩	

| ​+⟩	

| ​−⟩	

Basis	change	for	
measuring	in	| ​
+⟩	/	| ​−⟩	basis	
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A simple “quantum score” 
§  Visual representation of a series of operations 

performed on a quantum register (a set of 
qubits grouped together) 

§  N-qubit quantum register: qubits q[0] – q[N-1] 

§  After measurement, results stored in classical 
register as c[0] – c[N-1] 

§  Example quantum score on 2-qubit register: 
–  Initialize both qubits in | ​𝟎⟩ 
–  Apply Hadamard (H) to each qubit 
–  Measure q[0] in the | ​𝟎⟩, | ​𝟏⟩ basis 
–  Measure q[1] in the | ​+⟩, | ​−⟩ basis 

§  Results: 
–  q[0] measurement gives either | ​𝟎⟩ or | ​𝟏⟩, 

each with 50% probability 
–  q[1] measurement always gives | ​𝟎⟩ 

§  Infer that q[1] was in | ​+⟩ prior to 2nd H 

Quantum Opus I 

Hadamard	 Measure	in	| ​
𝟎⟩,	| ​𝟏⟩ basis	Ini8alize	

Measure	in	| ​
+⟩,	| ​−⟩ basis	
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Multi-qubit operations 
§  Two-qubit operations: 

–  Controlled not (CNOT): 
§  Classical behavior: flip target iff control is 1 

 
 

–  Controlled phase (CPhase) 
§  Same idea but target qubit is flipped around 

the Z axis (instead of X) 
§  Equivalent to CNOT up to single-qubit gates 

Initial State Final State 
Control Q Target Q Control Q Target Q 
| | | | 
| | | | 
α | + β | | α | + β | 

Entangled	state!	
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Superconducting qubits: 
device properties 
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Superconducting qubit building blocks 

|0〉 

|1〉 

|2〉 
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Circuit element toolbox 

R         C         L        JJ 

L-C Oscillator: harmonic 
à can’t address individual transitions 

JJ-C Oscillator: anharmonic 
à individual transitions addressable 

01ω

0112 ωω =

1223 ωω =

Josephson Junction: 
•  Weak link between two 

superconductors 
•  Typically Al / AlOx / Al 
Key features: 
•  non-linear inductance 
•  dissipationless operation 

Qubit 
|0〉 

|1〉 
|2〉 
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§ Qubit interacts with environment via a resonator 

§ Analogous to an atom in an optical cavity 

Qubit coupling via resonators: circuit QED (cQED) 

0 

Wallraff	et	al.,	Nature	431,	162	(2004)	
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Resonator / 
Qubit 

System 

Phase	(deg)	

f 

90	

-90	 fd 

κ	
Amplitude	

f 

2χ
2 2
m mI Q+

( )1tan /m mQ I−

( )12 tan /θ χ κ−=

Qubit Readout in cQED 
Readout pulses 
Control pulses Amplify, digitize, identify as 0 or 1 

Resonator frequency depends on qubit state 
à Infer qubit state from resonator response 

| ​0⟩ 

| ​0⟩ 

| ​1⟩ 

| ​1⟩ 

Readout freq. near ωr; control freq. at ω0 

θ

mImI I 

Q 
| ​0⟩ | ​1⟩ 

I  = in-phase 
Q = out-of-phase 

For 2χ =κ, θ = 90° 

Create 
pulses 

Gambeha	et	al.,	PRA	77,	012112	(2008)	
Jeffrey	et	al.,	PRL	112,	190504	(2014)	
Magesan	et	al.,	PRL	114,	200501	(2015)	
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IBM single-junction transmons 

§  Patterned superconducting metal (niobium + aluminum) on silicon 
–  Qubit capacitance dominated by shunting capacitance CS 

§  Resonant frequency ~ 5 GHz à energy splitting ~ 20 µeV, or 240 mK 
à  Cool in a dilution refrigerator (~ 10 mK) to reach ground state 

§  Interactions mediated by capacitively coupled co-planar waveguide resonators 
(circuit QED) 

= 
100 µm 

Josephson Junction 
~100 x 100 nm2 

CS ~ 60 fF  LJ ~ 20 nH 
CJ ~ 1 fF  

	To	bus		To	bus	
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Anatomy of a multi-qubit device 

1	mm	

Qubits:	
		Single-junc0on	transmon	
		Frequency	~	5	GHz	
		Anharmonicity	~	0.3	GHz	

Resonators:	
		Co-planar	waveguide	
		Frequency	~	6	–	7	GHz	
		Roles:	
				Individual	qubit	readout	
				Qubit	coupling	(“bus”)	

Ground	plane	
Periodic	holes	prevent	stray	
magne0c	field	from	hur0ng	
superconductor	performance	

Corcoles	et	al.,	Nat.	Commun.	6,	6979	(2015)	
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IBM Quantum Experience 
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IBM Quantum Experience (IBMQX) 
•  Free cloud based quantum computing platform 

–  5-qubit quantum processor (real hardware) 
–  20-qubit quantum simulator 
–  16-qubit quantum processor (access through QISKit: www.qiskit.org) 

IBM QX2: 5-qubit IBM QX3: 16-qubit 

Cloud 
research.ibm.com/ibm-q/ 

Quantum Simulator 
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15 External Papers
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Real Quantum Processor: Device Details 
•  5-qubit device 

–  Single-junction transmons 
–  T1 ~ T2 ~ 50 – 100 µs 
–  1Q gate fidelities > 99% 
–  2Q gate fidelities > 95% 
–  Measurement fidelities > 93% 
–  Connectivity: 6 CNOTs available 
 

•  16-qubit device (NEW!) 
–  Access through QISKit API only 
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IBM QX: Web Interface 
§  https://quantumexperience.ng.bluemix.net 

§  Graphical composer 
–  Compose quantum circuits using drag and drop interface 
–  Save circuits online or as QASM text, and import later 
–  Run circuits on real hardware and simulator 
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IBM QX: Web Interface 
§  https://quantumexperience.ng.bluemix.net 

§  Library 
–  User guides for all levels (beginner, advanced, developer) 
–  Run examples in composer 
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IBM QX: Web Interface 
§  https://quantumexperience.ng.bluemix.net 

§  Community forum 
–  Ask questions, discuss ideas 
–  Receive answers from IBM staff and community members 
–  Keep up to date with announcements and news 
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IBM QX: QISKit Interface 
§  www.qiskit.org 

§  Open source project 
for quantum software 
development tools 
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IBM QX: QISKit Interface 
§  www.qiskit.org 

§  GitHub: Python SDK 
–  Advanced interface 

interacting with 
quantum hardware 
and simulators 
through python. 

–  Write hybrid 
quantum-classical 
programs 



©2017 IBM Corporation 31 25 January 2018 

IBM QX: QISKit Interface 
§  www.qiskit.org 

§  GitHub: Python SDK 
–  Advanced interface 

interacting with quantum 
hardware and simulators 
through python. 

–  Write hybrid quantum-
classical programs 

§  GitHub: Tutorial Notebooks 
–  Interactive Jupyter 

notebooks demonstrating a 
variety of topics 
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IBM QX: QISKit Interface 
§  www.qiskit.org 

§  GitHub: Python SDK 
–  Advanced interface 

interacting with quantum 
hardware and simulators 
through python. 

–  Write hybrid quantum-
classical programs 

§  GitHub: Tutorial Notebooks 
–  Interactive Jupyter 

notebooks demonstrating a 
variety of topics 
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IBM QX: QISKit Interface 
§  www.qiskit.org 

§  GitHub: Python SDK 
–  Advanced interface 

interacting with quantum 
hardware and simulators 
through python. 

–  Write hybrid quantum-
classical programs 

§  GitHub: Tutorial Notebooks 
–  Interactive Jupyter 

notebooks demonstrating a 
variety of topics 

§  Advanced documentation 
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Using the Web Interface 
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IBMQX: Getting started 
•  Create account at https://quantumexperience.ng.bluemix.net 

•  Create a new experiment: our example is 2-qubits 
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IBMQX: Getting started 
•  Create account at https://quantumexperience.ng.bluemix.net 

•  Create a new experiment: our example is 2-qubits 

Drag	and	drop	gates	onto	the	score	
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IBMQX: Getting started 
•  Create account at https://quantumexperience.ng.bluemix.net 

•  Create a new experiment: our example is 2-qubits 

•  Score is translated into OPENQASM (a Quantum Assembly Language) behind the scene 
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IBMQX: Getting started 
•  Create account at https://quantumexperience.ng.bluemix.net 

•  Create a new experiment: our example is 2-qubits 

•  Score is translated into OPENQASM (a Quantum Assembly Language) behind the scene 
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Basic Operation 
•  Universal gate set is available 

Pauli gates 

Clifford gates 

Universal  
gate et 

Barriers 

Measurements 
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Basic Operation 
•  Universal gate set is available 

Get	addi8onal	informa8on		
about	gates	by	clicking	here	
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Basic Operation 
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Advanced Operations 
•  Advanced operations give access to arbitrary single qubit gates (u1, u2, u3) 

•  Advanced 2-qubit gate subroutines 

This	gate	generates	a	maximally	entangled	
Bell	state	from	the	ini8al	state	
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Advanced Operations 
•  Advanced operations give access to arbitrary single qubit gates (u1, u2, u3) 

•  Advanced 2-qubit gate subroutines 
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Generating an entangled state 
•  Lets use the gate to make a maximally entangled state. 

•  We clear the score and drag the new subroutine onto score 
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Generating an entangled state 
•  Lets use the gate to make a maximally entangled state. 

•  We clear the score and drag the new subroutine onto score 

•  Next we add measurements 
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Generating an entangled state 
•  Now we choose the simulation or experiment parameters 

•  Choose number of shots 

Click	here	to	choose	
number	of	shots	for	
simula8on	or	experiment	
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Generating an entangled state 
•  Now we choose the simulation or experiment parameters 

•  Choose number of shots 

Click	here	to	choose	
number	of	shots	for	
simula8on	or	experiment	
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Generating an entangled state 
•  Now we choose the simulation or experiment parameters 

•  Choose number of shots 

•  Click simulate to run simulation 

Click	simulate	to	run	
simula8on	
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Experiment Results 
•  After running we may view the experiment results 

Count	data	can	be	
exported	as	CSV	file	



©2017 IBM Corporation 50 25 January 2018 

Experiment Results 
•  After running we may view the experiment results 

•  Results are saved to your account to view or run again later 
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Using the QISKit SDK 
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QISKit: Getting started 
•  Download qiskit-tutorial from https://github.com/QISKit/qiskit-tutorial 

•  Install qiskit (optionally download SDK from https://github.com/QISKit/qiskit-sdk-py 

•  Navigate to qiskit-tutorial folder and launch Jupyter notebook 

•  Create a new Python 3 notebook and import qiskit 
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Programming a Quantum Experiment 
The most important part of QISKit is the QuantumProgram class.  

•  Roughly equivalent to the score on web interface 
•  Used to build and store quantum circuits 
•  Import or export QASM 
•  Interface with backends to run experiments (on real hardware or simulators) 

 Designing an experiment 
1.  Create a new QuantumProgram 
2.  Add 1 or more quantum registers 
3.  Add 1 or more classical registers 
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Programming a Quantum Experiment 
Adding a circuit to a QuantumProgram 

•  Next we create a new circuit to prepare a 2-qubit entangled state: 

•  We must first create an empty circuit with a name (label). We use “example” 

•  Use circuit methods to add gates to the circuit: 

|yi = |00i+ |11ip
2

Available circuit operation methods: 

•  Single qubit gates (iden., x, y, z, h, s, sdg, t, tdg, u1, u2, u3) 

•  Two qubit gates (cx, cy, cz, cu1, cu2) 

•  Measurement, reset, and barrier (measure, reset, barrier) 
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Programming a Quantum Experiment 
•  The quantum program now contains a single circuit that we may view: 

•  We may also view the QASM for this circuit: 
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Programming a Quantum Experiment 
Executing the circuit on a simulator 

•  We may view available backends for running a circuit: 

•  To use online backends we must set our API token and URL as follows: 
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Programming a Quantum Experiment 
Executing the circuit on a simulator 

•  We will run on the ’local_qasm_simulator’ which is an offline Python simulator. 

•  This is done using the execute command and returns a dictionary containing results: 

•  The results contain a list of counts. 

•  Counts can also be accessed directly by method: results.get_counts(‘example’) 

•  Note: Different backends may return different types of results in the data dictionary 

•  Note: A list of many circuits can be submitted at once by the execute command 
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Simulator Features 
We claimed that we prepared an entangled state? How can we verify this? 

•  Using the simulator in QISKit we may cheat and look directly at the state: 

•  To do this create new circuit to prepare the state without measurement: 

•  Execute: using shots = 1 to obtain the quantum state vector 
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Plotting States 
Plotting a state using the Visualization module: 

•  The qiskit.tools.visualization model contains several methods of visualizing quantum 
states: 
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Combining Circuits 
How would we verify the state is entangled on a real experiment? 

•  We need to measure the state in different bases. 

•  Create a new measurement circuit 
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Combining Circuits 
How would we verify the state is entangled on a real experiment? 

•  We need to measure the state in different bases. 

•  Create a new measurement circuit 

•  The measurement circuit can be appended to another circuit using the + operator 

•  This new circuit can be added to the quantum program using the add_circuit method 
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Combining Circuits 
How would we verify the state is entangled on a real experiment? 

•  We need to measure the state in different bases. 

•  We can repeat this for additional measurement circuits in different bases 
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Combining Circuits 
How would we verify the state is entangled on a real experiment? 

•  We need to measure the state in different bases. 

•  Run these circuits on a backend and get the counts: 
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Explore QISKit 
•  What next? 

•  Explore the QISKit tutorial Jupyter notebooks. A good start are the ones in Section 2: 


