Quantum Computing with
the IBM Quantum Experience with the
Quantum Information Software Toolkit (QISKit)

Nick Bronn
Research Staff Member
IBM T.J. Watson Research Center

ACM Poughkeepsie Monthly Meeting, January 2018

1 ©2017 IBM Corporation 25 January 2018

.||I‘

Overview

Part 1: Quantum Computing

= What, why, how

= Quantum gates and circuits

Part 2: Superconducting Qubits
= Device properties

= Control and performance

Part 3: IBM Quantum Experience

= Website: GUI, user guides, community
= QISKit: API, SDK, Tutorials

2 ©2017 IBM Corporation 25 January 2018

VW10 10N O
W/ANG0010 1011\

T WNI0101111000 M R
%19101011010101 103300 -
1001110110004 2110100015
18101 101001010167
“Muilenn PO 1000117

1010011001 40200103167
M 27 - i)
SNA01011010002109/7

"\W0110101 1018775
Mean10101 22008

.||I

Quantum computing:
what, why, how

“Nature isn’t classical . . . if you want to
make a simulation of nature, you’d
better make it quantum mechanical,
and by golly it’s a wonderful problem,
because it doesn’t look so easy.”
— Richard Feynman, 1981

, "*-; %,, | 2o ';““

b 4 e ~?H
~ _A'Q'hmu e .4‘.., : _;::

Computing with Quantum Mechanics: Features

5

‘.K '
e

‘\r"' \ .."

/“»4 &#/____@wﬁ-e@

|i>

Example: Schrodinger’s Cat

T, 7| Superposition: a system’s state can be
v d «5“’ any linear combination of classical states
..until it is measured, at which point it
collapses to one of the classical states

“Classical” states

Quantum

wavefunction l
Entanglement: particles in superpositiorx 1
can develop correlations such that W= ﬁ
measuring just one affects them all
Example: EPR Paradox (Einstein: “spooky ¢ ?
action at a distance”)

Observed
©2017 IBM Corporation 25 January 2018 "here"

Normalization /\

kadiad

- _é Linear combination

Affected

"over there"

Computing with Quantum Mechanics: Drawbacks

6

NVAVAVAY

Qubit State

o

Time

Uncertainty principle: measuring one
variable (e.g. position) disturbs its
conjugate (e.g. momentum)
Consequence: complete knowledge of
an arbitrary guantum state is impossible.
- “No-Cloning Theorem”

©2017 IBM Corporation 25 January 2018

Decoherence: a system is gradually measured
by residual interaction with its environment,

killing guantum behavior
Consequence: quantum effects observed only

in well-isolated systems (so not cats... yet)

<||I

What does a quantum bit look like?

P

7

Classical bit

Physical systems: capacitor charge,
transistor state, magnetic polarization,
presence or absence of a punched hole, etc.

Logical states: just 0 and 1

Multi-bit effects: none

Quantum bit (“qubit”)

Physical systems: electron spins, atomic
states, superconducting circuit states

Logical states: |0>, |1>, superpositions

Multi-qubit effects: entanglement

©2017 IBM Corporation 25 January 2018

g

Source

Drain

+++[+++

high resistance

low resistance

>

<||I

Gate model quantum

computing: the future

Fault-Tolerant QC

LA bbb bbb ddi i i i i il
Lttt bttt ddd
Lttt dddddddddddddddd
L bbbbddddddddid i i didddd
Lttt ddddddddddddddddd
Lttt ddddddddddddddddddd
L bbbt dddddddddddddddddd
(bbb bdddddddddddddddiiid il
L bdddddddddddddddddddddd
L bbb bdbdddddddddddddddddddddd
bt
Lttt ddd
Lttt dddd
Lttt
Lttt
bttt
bbbttt
bbbttt ettt
bttt
bttt sttt
bttt sttt
bttt st dd
bttt sttt dd
Lttt sttt sttt
LA AL A L A L L L A A L L L L L Al Al A A Al Ll

Millions of qubits fully fault-

tolerant

m
:

Near future:

50-100 qubits too big to simulate!

:

Today

How powerful is a quantum computer: quantum volume IBM Q

Quantum Volume

Volume of cube proportional
to useful quantum computing
that can be done

Improving the error rate Qubits Added: 0
will result in a more powerful Error Rate Decrease: 10x
Quantum Computer Quantum Volume Increase: 24x

Quantum Volume

25

10,000

Number of qubits (more is better) 5 a0

Errors (fewer is better)

- - " U’ Uﬂ
Connectivity (more is better) O e -
a
9 3 b |
Q&
. s
Gate set (more is better) > &
<. F
o
o o,»
0'6\ :
< Increasing qubit number Qubits Added: 100
"O,& 00\ does not improve a Quantum Error Rate Decrease: 0
%ohxg:;;arch | < Computer if error rate is high FESFERIVRYCSITRERRIHEEEERY

9 ©2017 IBM Corporation 25 January 2018

Quantum computing:
quantum operations and circuits

”HWN
UM

Single-qubit gates

= Gates are described by one or more Clifford group: permutes the states
rotations about an axis or set of axes 0), 1), 1+, I-), |7, and |7}, identified
— Pauli X, Y, Z gates: below YA
» Rotate &t radians about specified axis 0)
= X and Y gates equivalent to classical NOT
-Transform |0> to |[1> and vice versa
— Clifford gates: 2 &) >Y
* Permute states identified at right (includes »
Pauli gates)
— Arbitrary gates:
= Map any point on sphere to any other B
= Typically implemented with a small set of +) 0% 12 =)~ 0L v
well-calibrated gates, e.g. Clifford group
plus one additional gate 1))

X

= |OM7 = |0)x7 |1)v2
|02 'W@ 07 |1)

11 ©2017 IBM Corporation 25 January 2018

Key single-qubit gate: Hadamard (H)

= Hadamard gate: rotate 180°about X+Z axis

— Exchanges Z and X axes

— Takes classical states to equal-weighted
superposition states and vice versa

+)=2>10)
—-)=2>11)

— Used in almost every quantum algorithm

» Performs the quantum Fourier transform of

" 0)2>|+)
1)]-)

a single qubit

— Classical Fourier transform: exchange
conjugate variables describing a signal
(e.g. time domain - frequency domain)
— Quantum Fourier transform: exchange
conjugate variables describing a state

12

©2017 IBM Corporation

25 January 2018

Matrix representation of Hadamard acting on

o=l m=f] #=7h A

.||I

Qubit measurements

Measurement icon
] used in the IBM QX
Standard measurement in the /

computational basis:

— Collapses any superposition into one | 0> with probability o?
of the two classical states: |0) or |1) 0{‘ O> + ,B‘ 1> — | 1> with probability 32

Initial state Possible outcomes

* Measurement in other bases:
— Measurement itself is only sensitive to YA

0) Vs |1) 0) Basis ch.ang.e for
— To measure in other bases, rotate first) T)?alijrégii': |
— Example: to distinguish |+) from |—),

apply Hadamard before measuring >Y

= |f state was |+), measure |0))

= |f state was |—), measure |1)

1)

13 ©2017 IBM Corporation 25 January 2018

A simple "quantum score”

Visual representation of a series of operations
performed on a quantum register (a set of
qubits grouped together)

N-qubit quantum register: qubits q[0] — q[N-1]

After measurement, results stored in classical
register as c[0] — c[N-1]

Example quantum score on 2-qubit register:
— Initialize both qubits in |0)

— Apply Hadamard (H) to each qubit

— Measure q[0] in the |0), |1) basis

— Measure g[1] in the |+), |—) basis

Results:

— g[0] measurement gives either |0) or |1),
each with 50% probability

— g[1] measurement always gives |0)
= |nfer that gq[1] was in |+) prior to 2" H

14 ©2017 IBM Corporation 25 January 2018

/

Quantum Opus
= o T e Ea

;9' J=130 |
vbmz-,#i:;it;:d == ai ai 745151 7MJIZ fg R
=l F =R .
LR e [H—.”}U_\/v. —
Measure in |
itali Hadamard)
Initialize 0), |1) basis

/

\

J

|
Measure in | /

+), |-) basis

<||I

Multi-qubit operations

= Two-qubit operations:
— Controlled not (CNOT):
= Classical behavior: flip target iff control is 1

_____Initial State___|__Final State ____ [N PSR EATU—_,

ControlQ Target Q ControlQ Target Q
I I I

I | |
a|+ B a|+ gl

— Controlled phase (CPhase)
= Same idea but target qubit is flipped around
the Z axis (instead of X)
= Equivalent to CNOT up to single-qubit gates

15 ©2017 IBM Corporation 25 January 2018

<||I

Superconducting qubits:
device properties

Superconducting qubit building blocks

/ Circuit element toolbox

Josephson Junction:
 Weak link between two

C superconductors - ZV(t)
« Typically Al / AlOx / Al P
0
— Key features:
« non-linear inductance 27, cos(9)
- dissipationless operation

L-C Oscillator: harmonic JJ-C Oscillator: anharmonic
- can’t address individual transitions - individual transitions addressable

(V)3 = Wy . Wo3 7 Wo1
" Tanma Coagon P
E L 1o = Wy) ><

17 ©2017 IBM Corporation 25 January 2018

‘llll:

Qubit coupling via resonators: circuit QED (cQED)

= Qubit interacts with environment via a resonator

= Analogous to an atom in an optical cavity

2g = vacuum Rabi freq.
@ - K = cavity decay rate
Y v = “transverse” decay rate
t

Jaynes-Cummings Hamiltonian

2 ; ho
=hw,(a a+Y) - 200 ~hg(a'oc +o"a)+ H_+ H,
/ T \ Vg
Quantized Field 2-level system Electric dipole Dissipation
Interaction

Wallraff et al., Nature 431, 162 (2004)
18 ©2017 IBM Corporation 25 January 2018

Qubit Readout in cQED

Create

Resonator / /Qmml ~
Qubit —_

pulses

Resonator frequency depends on qubit state
- Infer qubit state from resonator response

Amplitude [

N

Phase (deg)
tan™’ (Qm /Im)

19 ©2017 IBM Corporation

System
Readout freq. near w,; control freq. at w,

X,

__10)

90

-90

25 January 2018

Amplify, digitize, identify as 0 or 1

I =in-phase
QO = out-of-phase
Ne,
10) 1)
Q, @
T | 1. 1!

For 2y =k, 6=90°

Gambetta et al., PRA 77, 012112 (2008)
Jeffrey et al., PRL 112, 190504 (2014)
Magesan et al., PRL 114, 200501 (2015)

‘llli:

IBM single-junction transmons Josephson Junction

L, ~ 20 nH C< ~ 60 fF

S
S
N
J_ fl\ ~100 x 100 nm?

100 um

= =—p To bus

C,~1fF TJ_
f T
)\\(5& To bus ===

» Patterned superconducting metal (niobium + aluminum) on silicon
— Qubit capacitance dominated by shunting capacitance Cq

* Resonant frequency ~ 5 GHz - energy splitting ~ 20 ueV, or 240 mK
- Cool in a dilution refrigerator (~ 10 mK) to reach ground state

= |nteractions mediated by capacitively coupled co-planar waveguide resonators
(circuit QED)

20 ©2017 IBM Corporation 25 January 2018

.||I

Anatomy of a multi-qubit device

Qubits: 4
Single-junction transmon

Frequency ~ 5 GHz ~
Anharmonicity ~ 0.3 GHz \

Resonators:
Co-planar waveguide

Frequency ~ 6 —7 GHz
Roles:

Individual qubit readout /

Qubit coupling (“bus”)

Ground plane

Periodic holes prevent stray
magnetic field from hurting
superconductor performance

_ Corcoles et al., Nat. Commun. 6, 6979 (2015)
21 ©2017 IBM Corporation 25 January 2018

IBM Quantum Experience

IBM Quantum Experience (IBMQX)

* Free cloud based quantum computing platform
— 5-qubit quantum processor (real hardware)

— 20-qubit quantum simulator
16-qubit quantum processor (access through QISKit: www.qiskit.org)

\:h.«':’)OIIOIDklh\\' :
1010111110\\\\\« .
mwwuoxoxmmmm :
J00f12011 ai10100e
8101 xooxomc

autiony 0100011+
A 1010011001 0200103¢7

'B\mouowuou&

L"'\\0101101(’{ I
010101148

L,
111

¢

IBM QX2: 5-qubit

23 ©2017 IBM Corporation 25 January 2018

L
w
o)
.
~

Quantum Simulator IBM QX3:

Cloud

Qi1 Q10 a9

x
—
N

16-qubit

research.ibm.com/ibm-q/

.||I

A quantum teleportation experiment for undergraduate students

S. Fedortchenko®
Latormtosrs Maldowe el Phéneménes Quontigues, Sordvinne Paras ONE,
Braiding Majoranas in a five qubit experiment pl, CNTeS UMR 7162, 75013, Parvs, Trance
. . . . formation these recent years, it becomes more and more
Performing Quantum Computing Experiments in the Cloud James R. Wootton vhis research topic 1o undergraduate students. Hawever,
of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland ncal Iearmng is rlmply armmpamed m1h exppnnmnl al
-] (Dated: Septer~h~= 27 o1& e
. g @unou J. Qevltt .] - - Homomorphic Encryption Experiments on IBM’s Cloud Quantum Computing
Center for Emergent Malter Science, RIKEN, Wakoshi, Sailema 315-0198. Japan. he mainstream approach to quantu . .
ate quantum information wi Platform
_ PHYSICAL REVIEW A 94, 012314 (2016) if they were particles. Spe " - T 1o
Quantum computing 1 kind of non-Abelian anyo He-Liang Huzng,"*? You-Wei Zhao,>® Tan Li,"? Feng-Guang L, Yu-Tao B
interest from both the) . be implemented. F Dot 2 Xiang Qun Fu,t? Shuo Zhang,~? Xiang Wang,? and Wan-Su Baob 2
: Experimental test of Mermin inequalities on a five-qubit quantum computer eon e b 4 I R — . HEE " -
P‘-’:‘fﬂ:l@n:a:] r:t)gr&ms ht: p “q q q P code Maioranas. This is 1 Zhismmebis Iosbaremmdine Qoinnnn nod Tanhenlonn Institde, Henan, Zhengzhou §50000, Ching
anticipated by many, T : o s . i | = e s st e o Pubished i prnznsiip Centre i Quantum Informetion end Quantum Physice.
cloud, with users loggir . y Dame! Als{na .mq José Ignacio Latocre New journal °f PhYSICS Do Wik Deutzone Pyzisalische o Chinws, Hefwi, Andoes 250026, Clane
I d the C ¢ i Depariamen: Fisica Quanzica i Astrofisica, Universita de Barcelona, Diagonal 645, 08(e . s I0P nstitinzcf Pyzdcs Graclsenattans e nstihute o tm;(alc‘ ot Ut rimcat o Modorm Phasice
ltf s paper » Q:ﬁ:«l u,_;n and Inssina de Ciéneles del Cosmos (ICCUB), Martd § Franqués 1, 08028 Barce | "/ essivanatimelisaniur ples P N VA =
D D s (Received 25 May 2016; published 11 July 2016) Demonstration of entanglement assisted invariance
Expcrimcnta] Comparison of Two Quantum Computing Architectures F: PAPER on IBM’s Quantum Experience
N. M. Linke,! 1. Maslov,”® M. Roetteler,! §. Debnath,' C. Entropic uncertainty and measurement reversibility Sebastian Deffner
Figastt.,! K. A. Landsman,! K. Wright.! and C. Monroe'-*% | De . - . .
» 1 : R s . . partment of Physics, University of Maryland Baltimore County, Baltimore, MD
Vil Quardwine Frsiiele omd Degorbicend of Plysics, Mario Berta ’s'q’h‘ame Wehner’and Mark M Wilde™ 21250, USA
£ Quantum lnlonnston aed Matter, Californiz Isstitute of Technobwe Duecidma 401133
w 3 1 P 3 . Universaty of Toduology, Locentzweg 1, 2628 C) Dellt, The N - i i i i
Compressed quantum computation using the IBM Quantum Experience s ettty | Leggett-Garg test of superconducting qubit addressing the clumsiness loophole
. Tatan Rauge, LA 70803, USA
M. Hebenstreit,® Do Alsiea23 0. L Latorre,?% and B, Krans! any correspandence should v addrssed. Emilie Huffman"? and Ari Mizel'
) 'Instibute for Theorctical Physics, Unyversity of Innsbruck, ~ ; wratory for Physical Sciences, College Park, Maryland 20740, USA
*Dept. Feica Quantica i Astroffeica, Universitod de Harcelona, iiagown O C()"lpllt'dd()l' Qll'dntl(i() da IBM e o IBM Quant'wm lnt of Physics, Duke University, Durham, North Carolina 27708, USA

®fnstitut de Cidneies del Cosmos, Universitol de Bareelono, [Hagonal .
Experience . ;
S — | Quantum state reconstruction made easy: a direct method for tomography
IBM Quantum Computer and the IBM Quantum Exps
ProjectQ: An Open Source Software Framework for Quantiam Computing
jectQ I Q ' B Alan C. Santos™! R. P. Rundle,! Todd Tilma,2 J. . Samson,” and M. J. Ew:ritt.l'E]

Damian 5. Smiswﬂ Thomas Hiarer[] and Mathiss Troyer]| Quantumn Systeme Dngincering Research Group & Department of Phyeics,
Frststute. far Theavatial Phyeins, FTIF ".'-':" ':r 6093 Zurich, Switserland Fisica, Universidade Federal Fluminense, Niteri, Rio de Ja Lemghboraugh Undversity, Leicestevshire LETT STU, United Kingdom
(Datex: Deconber 28, 2016) *Tokyo Instituie of Technology, 2-12-1 Ookagarna, Meguro-ku, Tokyo 152-8550, Japun
fentires n compiler famemnrk ¢ QIintuple: a Python H-qubit quantum computer simulator to
3 \ }1 . l 3 D Y - vy .
stoilator wih exutadion csogy facilitate cloud quantum computing

;1 Approximate Quantum Adders with Genetic
v cxampls plementatiel <= Algorithms: An IBM Quantum Experience

Lz wleurisboe Lroegs sizuulal Christine Corh \ aboe imp
n hnck-end cormeoting no the 11 Shristine Corhetc Moran™™ qu1 1 2 2 21
piroes, weers can provide back-ea 3 Ru‘ Li * Unal Alvafez nouﬂguoz * Lucas Lamata 3 and Enflque Solano

rompilation cen provide ping-ing *NSE AAPF Culiforvia fnsliluie of Technology, TAPIR, 1207 B. Cobformae Blod, Posedens, CA

We inlroduce ProjectQ), we op

Ca never
PeTties,
p syvslem
the form

sleaiegies, R e 21 -';-’-*7 o e terra ' Departmant of Physice, Znhejlang University, Hangzhou 310027, China tors. In
Unciversily of Chicuyo, 2026 SPT Wadsrvver Svrevlisl, Amandeen-Scoil Soulh Pule Slation. e a ZDepartment of Physical Chemistry. University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, hould be

Antarben
nenee

e Wigner

Spain
*IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

24 ©2017 IBM Corporation 25 January 2

ABSTRACT

Real Quantum Processor: Device Detalls

« 5-qubit device
— Single-junction transmons
— T,~T,~50-100 us
— 1Q gate fidelities > 99%
— 2Q gate fidelities > 95%
— Measurement fidelities > 93%
— Connectivity: 6 CNOTs available

B

iy : I “": B
il il

* 16-qubit device (NEW!)
— Access through QISKit APl only

S

alll

1

25 ©2017 IBM Corporation 25 January 2018

<||I

IBM QX: Web Interface

= https://quantumexperience.ng.bluemix.net

= Graphical composer
— Compose quantum circuits using drag and drop interface

— Save circuits online or as QASM text, and import later
— Run circuits on real hardware and simulator

Composer Library Community

New experiment [J New Save rlj Save as ibmqx2 Run

Simulate

Gates Properties QASM

IIIIIIII

ql0] ki=—n é H GATES @ 7] Advanced
.. []
o = 0
X | |
ql2] i ? /7|
T @] -
al4] ki ? .
s f+
,5/
€0 ! 0 1 2 3 4
C__——

26

©2017 IBM Corporation 25 January 2018

.||I

IBM QX: Web Interface

GHZ States

Perhaps even stranger than Bell states are their three-qubit generalization, the GHZ states. An example of one of these states is

= https://guantumexperience.ng.bluemix.net

1

—(|000; |111)). The measured results should be half [000) and half |111). GHZ states are named after Greenberger, Horne, and Zeilinger,
2

V2

who were the first to study them in 1997. GHZ states are also known as "Schroedinger cat states” or just "cat states.”

In the 1990 paper by N. David Mermin, What's wrong with these elements of reality?, the GHZ states demonstrate an even stronger violation of local

L
. L I b ra reality than Bell's inequality. Instead of a probabilistic violation of an inequality, the GHZ states lead to a deterministic violation of an equality.
Imagine you have three independent systems which we denote by a blue,

— User guides for all levels (beginner, advanced, developer)

box there are two questions, labeled X and Y, that have only two
possible outcomes, +1 or —1. You must come up with a solution to the

following set of identities.

— Run examples in composer N

RESOURCES REALTI T o L8 K| Beginner's Guide

rting out? This gt

QISKit on GitHub Experiments with the IBM Q

Experience

Ir py ftv
q orithms

IBM QX: Web Interface

= https://quantumexperience.ng.bluemix.net

= Community forum
— Ask questions, discuss ideas
— Receive answers from IBM staff and community members
— Keep up to date with announcements and news

Join the IBM Q experience Community

The IBM Q experience Community brings together researchers and
guantum enthusiasts to share, connect and collaborate

All Categori -
@ Post to forum Searc . ategories Quick links

) FAO

General [[D Beginner's Guide
-1 . 1 _
backend = 'local_gasm_simulator' and backend = (L) Full User Guide

'ibmgx_gasm_simulator’,

21 Hi ,sir.In recently ,when i set the backend = 'local_gasm_simulator',it always prompt
VVVVV "QISKitError: 'A process in the process pool was terminated abruptly ... Tags
0 @ zhouleiiq Posted 5 hours ago Last comment by 5 hours ago quantum computing

28 ©2017 IBM Corporation 25 Jaﬁuary 2018

‘llll:

IBM QX: QISKit Interface

= www.qiskit.org

= Open source project

for quantum software
development tools

29

©2017 IBM Corporation

QISKit

Quantum Information Software Kit

3

Approximate Quantum Computing: From advantage to applications
Recordings now available!

4% Join our Slack community

Learn

Use QISKit to create quantum computing programs, compile them,
and execute them on one of several backends (online Real quantum
processors, and simulators).

Latest version e @8

Inbox (489) - nick.bronn@gmail.com - Gmail iR (S &I I NCEY

software development kit (SDK) for working with OpenQASM and the
IBM Q experience (QX).

Tutorials

Documentation

IBM Q experience

25 January 2018

Run a quantum program

[python3] $ pip install qiskit

from giskit import QuantumProgram

qp = QuantumProgram()

qr = gp.create_quantum_register('qr',2)
cr = gp.create_classical_register(‘cr',2)
qc = gp.create_circuit('Bell’, [qgr], [cr])
qc.h(qrlel)

qc.cx(qrlel, qrl1])

qc.measure(qr(@], crlol)
qc.measure(qr(1], crl1])

result = gp.execute('Bell’)
print(result.get_counts('Bell'))

.||I

IBM QX: QISKit Interface

= www.qiskit.org

= GitHub: Python SDK

— Advanced interface

30

interacting with

QISKit

quantum hardware Quantum Information Software Kit

and simulators
through python.
Write hybrid

guantum-classical

programs

©2017 IBM Corporation

p 4% Join our Slack community

Approximate Quantum Computing: From advantage to applications
Recordings now available!

Latest version o @8 Learn Run a quantum program

Inbox (489) - nick.bronn@gmail.com - Gmail J&{ TR E LR Use QISKit to create quantum computing programs, compile them,
software development kit (SDK) for working with OpenQASM and the and execute them on one of several backends (online Real quantum
IBM Q experience (QX). processors, and simulators).

[python3] $ pip install qiskit

from giskit import QuantumProgram

qp = QuantumProgram()

qr = gp.create_quantum_register('qr',2)

cr = gp.create_classical_register(‘cr',2)
qc = gp.create_circuit('Bell’, [qgr], [cr])

qc.h(qrlel)

qc.cx(qrlel, qrl1])

B qc.measure(qr(@], crlol)

Documentation qc.measure(qr(1], crl1])
result = gp.execute('Bell’)
print(result.get_counts('Bell'))

Tutorials

IBM Q experience

25 January 2018

.||I

IBM QX: QISKit Interface

: JUpyter iNdeX (autosaved) ? Logout

= www.qiskit.org

= GitHub: Python SDK
— Advanced interface
interacting with quantum
hardware and simulators

through python.

— Write hybrid quantum-
classical programs

GitHub: Tutorial Notebooks

— Interactive Jupyter

31

notebooks demonstrating a

variety of topics

©2017 IBM Corporation

25 January 2018

File Edit View Insert Cell Kernel Help Trusted | Python3 O

B + = @B 4+ v M EM C Markdown Al &

1. Introducing the tools

In this first topic, we break down the tools in the QISKit SDK, and introduce all the different parts to
make this useful. Our list of introductory notebooks:

Getting started with QISKit SDK - how to use QISKit SDK.

Understanding the different backends - how to get information about the connected backends.

Compiling and running a quantum program - how to rewrite circuits to different backends.

Running a quantum program on |IBM DSX - how to run a quantum notebook directly using IBM

Data Science Experience (i.e. without installing any dependencies locally!)

« Loading and Saving a Quantum Program [coming soon).

« Visualizing a quantum state - illustrates the different tools we have for visualizing a quantum
state.

« Quantum gates and linear algebra - list all basic gates and their definitions

2. Exploring quantum information concepts

The next set of notebooks shows how you can explore some simple concepts of quantum
information science.

.||I

IBM QX: QISKit Interface

= www.qiskit.org

= GitHub: Python SDK
— Advanced interface
interacting with quantum
hardware and simulators

through python.

— Write hybrid quantum-
classical programs

GitHub: Tutorial Notebooks

— Interactive Jupyter

32

notebooks demonstrating a

variety of topics

©2017 IBM Corporation

25 January 2018

In [5]:

In [6]:

result = Q program.execute(circuits, backend=backend, shots=shots, max_credits=3, wait=10,
timeout=240, silent=False)

running on backend: ibmgx2
status = RUNNING (10 seconds)
status = RUNNING (20 seconds)

After the run has been completed, the data can be extracted from the API output and plotted.

plot_histogram(result.get_counts('ground'))

0.989258

Probabilities
o o =
[=2] [e:] o

S
'S

o
N

0010742

o
o

o
S
8§

.||I

IBM QX: QISKit Interface

= www.qiskit.org

= GitHub: Python SDK
— Advanced interface
interacting with quantum
hardware and simulators
through python.
— Write hybrid quantum-
classical programs

» GitHub: Tutorial Notebooks
— Interactive Jupyter
notebooks demonstrating a
variety of topics

= Advanced documentation

33 ©2017 IBM Corporation 25 January 2018

Table Of Contents

QISKit Documentation

Philosophy

Project Overview

Cetting Started

= Quantum Chips

= Project Organization

Structure

= Programming interface

= [nternal modules

Python Modules

= Main Modules

Installation and setup

= 1. Get the tools

= 2. PIP Install

3 Repository Install

3.1 Setup the

environment

= 4. Configure your API
token

Install Jupyter-based

tutorials

= 1.1 Install standalone

= 1.2 Install into the QISKit
folder

FAQ

Authors (alphabetical)

Other QISKit projects

License

Do you want to help?

Index and Search

Getting Started

The starting point for writing code is the QuantumProgram object. The QuantumProgram is a collection of
circuits, or scores if you are coming from the Quantum Experience, quantum register objects, and classical
register objects. The QuantumProgram methods can send these circuits to quantum hardware or simulator
backends and collect the results for further analysis.

To compose and run a circuit on a simulator, which is distributed with this project, one can do,

from giskit import QuantumProgram

ap
ar
cr
ac
ac
gc
ac
ac

QuantumProgram()
gp.create_quantum_register('qgr’, 2)
gp.create_classical_register('cr', 2)
gp.create_circuit('Bell’, [gr], [cr])

-h(qr[0])

.cx(gr[0], gr[l])
.measure(gr[0], cr[0])
.measure(gr[l], cr[l])

result = gp.execute('Bell’)
print(result.get_counts('Bell’))

The get_counts method outputs a dictionary of state:counts pairs;

{'00': 531, '11': 493}

.||I :

Using the Web Interface

IBMQX: Getting started

» Create account at https://quantumexperience.ng.bluemix.net

» Create a new experiment: our example is 2-qubits

New Experiment

Quantum Registers

Name Number of Qubits

q 2 n
+ Add Quantum Register

Classical Registers

Name Number of bits

c 2 > n

+ Add Classical Register

Set Topology

35 ©2017 IBM Corporation 25 January 2018

.||I

IBMQX: Getting started

» Create account at https://quantumexperience.ng.bluemix.net

» Create a new experiment: our example is 2-qubits

New experiment [j New Save la Save as simulate

Gates Properties QASM

ql0] o) GATES @ Advanced

H

al])

<> Switch to Qasm Editor

Drag and drop gates onto the score

36 ©2017 IBM Corporation 25 January 2018

.||I

IBMQX: Getting started

» Create account at https://quantumexperience.ng.bluemix.net

» Create a new experiment: our example is 2-qubits

New experiment [J New Save @ Save as Simulate

Gates Properties QASM

ql0] |0} GATES @ — Advanced
altl ? n . n

-

</> Switch to Qasm Editor

« Score is translated into OPENQASM (a Quantum Assembly Language) behind the scene

37 ©2017 IBM Corporation

25 January 2018

.||I

IBMQX: Getting started

» Create account at https://quantumexperience.ng.bluemix.net

* Create a new experiment: our example is 2-qubits

New experiment [J New Save FDSaveas o

"gelibl.inc";
q(2];

- al0] 1o —J é & 3
h q[0]; qr1l jo; L
2

cx q[0],q9[1];
t qg[l]; €
cx q[0]1,ql[1];

> q[0] => c[0];

q(l] -> c[1];

0 1

1
2
3
4
5
6
7
8
9
0
1

=

.?. Import QASM -‘- Dowload QASM

& Switch to Composer

« Score is translated into OPENQASM (a Quantum Assembly Language) behind the scene

38 ©2017 IBM Corporation 25 January 2018

.||I

Basic Operation

* Universal gate set is available

Advanced

Pauli gates

Clifford gates

Universal
gate et

OPERATIONS Measurements

39 ©2017 IBM Corporation 25 January 2018

.||I

Basic Operation

* Universal gate set is available

GATES ©) Advanced

e Get additional information
about gates by clicking here

BARRIER

OPERATIONS

40 ©2017 IBM Corporation 25 January 2018

.||I

Basic Operation

The first physical gate »f
the Quantum Experier
It is a one parameter
single-qubit phase gat
with zero duration.

Help

s Tha carand nhucical oate

gate u2(phi,lambda) q {
U(pi/2,phi, lambda) q;

by

QASM Matrix

The Pauli X gate is a -
rotation around the X
axis and has the property
that X — X, Z — —Z.
Also referred to as a bit-
flip.

QASM Matrix

QASM Matrix

The Pauli Y gate is a -
rotation around the Y
axis and has the property
that X — - X, Z — —Z
. This is both a bit-flip

and a phase-flip, and
satisfiesY = X Z.

QASM Matrix

[[cos(theta/2),-exp(1lixlambda)

The third physical gate of
the Quantum Experlence

VU N - L T

QASM Matrix

The Pauli Z gateis a -
rotation around the Z
axis and has the property
that X — — X, Z — Z.
Also referred to as a
phase-flip.

QASM Matrix

The identity gate
performs an idle
operation on the qubit
for a time equal to one
unit of time.

QASM Matrix

The Hadamard gate has
the property that it maps
X — Z,and Z — X.
This gate is required to
make superpositions.

QASM Matrix

.||Ii

Advanced Operations

» Advanced operations give access to arbitrary single qubit gates (u1, u2, u3)

» Advanced 2-qubit gate subroutines

Gates Properties QASM

New Subroutine

GATES @ Advanced

OPERATIONS

q0[0] ”f'-ﬂ
W 1 IEI 1 K

Add

BARRIER

o
. / This gate generates a maximally entangled

Bell state from the initial state

+ Add subroutine

42 ©2017 IBM Corporation 25 January 2018

.||I‘

Advanced Operations

» Advanced operations give access to arbitrary single qubit gates (u1, u2, u3)

» Advanced 2-qubit gate subroutines
Gates Properties QASM

GATES @ Advanced

OPERATIONS
0
BEHONH -
K xffeut
BARRIER .

m =+ Add subroutine
+ Add s

43 ©2017 IBM Corporation 25 January 2018

subroutine

.||I

Generating an entangled state

* Lets use the gate to make a maximally entangled state.

 We clear the score and drag the new subroutine onto score

New experiment [J New Save @ Save as

Simulate

Gates Properties QASM

-‘- Export QASM

q[o] o)

q(1] o)

ql(2];
] c[2];
Cq

1
2
3
4
=
6
7
8
9
0

—

44 ©2017 IBM Corporation 25 January 2018

"gelibl.inc";

.||I

Generating an entangled state

* Lets use the gate to make a maximally entangled state.
 We clear the score and drag the new subroutine onto score

* Next we add measurements

New experiment [J New Save FD Save as

Simulate

Gates Properties QASM

-‘- Export QASM

q(0] [0}
- = le "gelibl.inc";
q[1] 10} N ql2];
reg c[2];
c u’
0 1

0 N oUW N =

entU q[0],q9[l1];
sure q[(0] -> c[0];
ire q[l] -> c[1);

45 ©2017 IBM Corporation 25 January 2018

.||l

Generating an entangled state

 Now we choose the simulation or experiment parameters

e Choose number of shots

New experiment [J New Save @ Save as

Click here to choose
number of shots for

simulation or experiment

Simulate

(Shots: 100

Seed: Random

q[0] |0}

RS

Edit parameters

ql1] [0}

Con

46 ©2017 IBM Corporation 25 January 2018

q[0],q[1];
> q[0] =-> c[0];

> q[l] =-> c[l];

.||I

Generating an entangled state

 Now we choose the simulation or experiment parameters

e Choose number of shots

Edit Execution Parameters of Simulation

Number of shots (between 1 and 8192)

1024

Seed

Cancel

47 ©2017 IBM Corporation 25 January 2018

Click here to choose
number of shots for

simulation or experiment

Simulate

(Shots: 100
Seed: Random

Edit parameters

entU q[0],q[1];
> q[0] =-> c[0];

> q[l] =-> c[l];

.||I

Generating an entangled state

Click simulate to run

 Now we choose the simulation or experiment parameters simulation

e Choose number of shots

* Click simulate to run simulation

Name your experiment

Your experiment will be saved before executing it. Please, enter a name for your
experiment:

Experiment name

Bell Experiment

Cancel

48 ©2017 IBM Corporation 25 January 2018

Simulate

(Shots: 100
Seed: Random

Edit parameters

entU q[0],q[1];
> q[0] =-> c[0];

> q[l] =-> c[l];

.||I

Experiment Results

« After running we may view the experiment results

Quantum State: Computation Basis

0.494

49 ©2017 IBM Corporation 25 January 2018

Count data can be
exported as CSV file

Download CSV

<||I

Experiment Results

« After running we may view the experiment results

* Results are saved to your account to view or run again later

Quantum Circuit

a[0] :;1
< II:)

]

Executed on: Sep 13, 2017 3:03:29 PM

Results date: Sep 13, 2017 3:03:2% PM

50 ©2017 IBM Corporation 25 January 2018

Number of shots: 1024

Seed: 835942009

OPENQASM 2.0

Cpenin Composer

<> Editin QASM Editor

Download All Data

.||I

Using the QISKit SDK

QISKit: Getting started

« Download qiskit-tutorial from https://github.com/QISKit/qiskit-tutorial
 Install giskit (optionally download SDK from htips://github.com/QISKit/qiskit-sdk-py

* Navigate to qiskit-tutorial folder and launch Jupyter notebook

| O @® 1. cjwood@christophers-MacBook-Pro: ~/Documents/IBM-Git/qiskit-tutorial
= qiskit-tutorial master) X pip install giskit; jupyter notebookl

* Create a new Python 3 notebook and import qiskit

In [1]: # Import QISKit
import giskit
from giskit import QuantumProgram # basic QISKit object

Add IBMQOX API token and URL. Needed for online access

API TOKEN = "your quantum experience api token here"
API URL = 'https://quantumexperience.ng.bluemix.net/api’

52 ©2017 IBM Corporation 25 January 2018

Programming a Quantum Experiment

The most important part of QISKit is the QuantumProgram class.
* Roughly equivalent to the score on web interface
« Used to build and store quantum circuits
* Import or export QASM
 Interface with backends to run experiments (on real hardware or simulators)

Designing an experiment
1. Create a new QuantumProgram
2. Add 1 or more quantum registers
3. Add 1 or more classical registers

In [2]: # Initialize a new quantum program
gp = QuantumProgram()

Add a 2-qubit quantum register "qr"

gr = gp.create quantum register('qr", 2)

Add a 2-bit register "cr" to record results
cr = gp.create classical register(“cr", 2)

53

©2017 IBM Corporation

25 January 2018

.||I

Programming a Quantum Experiment

Adding a circuit to a QuantumProgram

* Next we create a new circuit to prepare a 2-qubit entangled state: |y) = |OO>\E|11>

* We must first create an empty circuit with a name (label). We use “example”

» Use circuit methods to add gates to the circuit:

In [3]: # Create a new empty circuit which uses these registers
circ = gp.create circuit('example', [qgr], [cr])
circ.h(qr[0]) # add Hadamard gates to qubit-0
circ.cx(qr[0], gqr[l]) # CNOT between qubit-0 and qubit-1

circ.measure(qr, cr)| # measure qubits
Available circuit operation methods: | “n "
» Single qubit gates (iden., x, y, z, h, s, sdg, t, tdg, ut, u2, u3) B ... |
« Two qubit gates (cx, cy, cz, cul, cu2) s @ 2]
« Measurement, reset, and barrier (measure, reset, barrier) cua

BARRIER

54 ©2017 IBM Corporation 25 January 2018

<||I

Programming a Quantum Experiment

* The quantum program now contains a single circuit that we may view:

In [4]: gp.get_circuit names/()

Out[4]: dict keys(['example'])

* We may also view the QASM for this circuit:

In [5]: gasm = gp.get _gasm('example')
print(gasm)

OPENQASM 2.0;

include "gelibl.inc";
greg gr[2];

creqg cr[2];

h gqr[(0];

cx qr[0],qr[1];

measure qr[0] -> cr[0];
measure qr[l] -> cr[l];

55 ©2017 IBM Corporation 25 January 2018

.||I

Programming a Quantum Experiment

Executing the circuit on a simulator

« We may view available backends for running a circuit:

In [6]: gp.available backends()

Out[6]: ['local gasm cpp simulator', 'local gasm simulator', 'local unitary simul
ator']

 To use online backends we must set our API token and URL as follows:

In [7]: gp.set api(API TOKEN, API URL)
gp.available backends()

Out[7]: ['ibmgx3',
'ibmgx2',
'ibmgx gasm simulator’',
'local gasm _cpp simulator',
"local_gasm_simulator',
'local unitary simulator']

56 ©2017 IBM Corporation

25 January 2018

.||I

Programming a Quantum Experiment

Executing the circuit on a simulator

« We will run on the ’local _gasm _simulator’ which is an offline Python simulator.

« This is done using the execute command and returns a dictionary containing results:

In [7]:

backend = 'local gasm simulator’

shots = 1024

results = gp.execute('example', backend='local gasm simulator', shots=1024)
data = results.get data('example')

print(dataﬂ

{'counts': {'00': 509, '11': 515}}

The results contain a list of counts.

Counts can also be accessed directly by method: results.get counts(‘example’)

Note: Different backends may return different types of results in the data dictionary

Note: A list of many circuits can be submitted at once by the execute command

57 ©2017 IBM Corporation

25 January 2018

Simulator Features

We claimed that we prepared an entangled state? How can we verify this?
» Using the simulator in QISKit we may cheat and look directly at the state:

« To do this create new circuit to prepare the state without measurement:

In [8]: # Create a new empty circuit which uses these registers
circ = gp.create circuit('bell', [qr], [cr])
circ.h(qr[0]) # add Hadamard gates to qubit-0
circ.cx(qr[0], gqr[l]) # CNOT between qubit-0 and qubit-1

« Execute: using shots = 1 to obtain the quantum state vector

In [9]: # Execute on simulator for 1 shot
backend = 'local_gasm simulator'
shots = 1

results = gp.execute('bell’', backend='local gasm simulator', shots=shots)
data = results.get data('bell’)
print(data)

{'quantum state': array([0.70710678+0.j, 0.00000000+0.3j, 0.00000000+0.
j, 0.70710678+0.j]), 'classical state': 0, 'counts': {'00': 1}}

58 ©2017 IBM Corporation 25 January 2018

.||I

Plotting S

tates

Plotting a state using the Visualization module:

» The qgiskit.tools.visualization model contains several methods of visualizing quantum

states:

In [10]:

Import QISKit visualization library
from giskit.tools.visualization import plot_ state

from giskit.tools.qgi.qi import outer

Plot the density matrix of the state

rho = outer(data['quantum state'])
plot_state(rho, method='city'ﬂ

convert to density matrix

59 ©2

Real[rho)

<||I

Combining Circuits
How would we verify the state is entangled on a real experiment?
 We need to measure the state in different bases.

 Create a new measurement circuit

In [11]: measZZ = gp.create circuit('measZZ', [gr], [cr])
measZZ.measure(qr, cr)
print(gp.get gasm('measZZ'))

OPENQASM 2.0;

include "gelibl.inc";
qreg qr[2];

creg cr(2];

measure gqr[0] -> cr[0];
measure qr[l] -> cr[l];

60 ©2017 IBM Corporation 25 January 2018

.||I

Combining Circuits

How would we verify the state is entangled on a real experiment?

* We need to measure the state in different bases.

» Create a new measurement circuit

* The measurement circuit can be appended to another circuit using the + operator

« This new circuit can be added to the quantum program using the add_circuit method

In [12]: gp.add circuit('example mZZ', circ + measZz)
print(qp.get_qasm('example_mzz')ﬂ

OPENQASM 2.0;

include "gelibl.inc";
greg qr[2];

creg cr(2];

h gr[0];

cx gqr[0],qr[1l];

measure qr[0] -> cr[0];
measure qr[l] -> cr[1l];

61 ©2017 IBM Corporation 25 January 2018

.||I

Combining Circuits

How would we verify the state is entangled on a real experiment?

62

We need to measure the state in different bases.

We can repeat this for additional measurement circuits in different bases

In [13]:

Create circuit to measure both qubits in X basis
measXX = gp.create circuit('measXX', [gqr], [cr])
measXX.h(qgr)

measXX.measure(qgr, cr)

Create circuit to measure both qubits in Y basis
measYY = gp.create circuit('measYY', [gr], [cr])
measYY.h(qr)

measYY.s(Qgr)

measYY.measure(qr,cr)

Add circuits to QuantumProgram

gp.add circuit('example mXX', circ + measXX)
gp.add circuit('example mYY', circ + measYY)
print(gp.get_circuit names())

dict keys(['example’', 'bell’', 'measZZ', 'example mZZ',

Y', 'example mXX', 'example mYY'])

'measXX', 'measY

11 IV VUL VT AUV

v vdliualy vV

.||I

Combining Circuits

How would we verify the state is entangled on a real experiment?

* We need to measure the state in different bases.

* Run these circuits on a backend and get the counts:

In [14]): backend = 'local gasm simulator'
shots = 1024
meas_circs = ['example mZZ', 'example mXX',

meas_res = gp.execute(meas_circs, backend=backend, shots=shots)

for ¢ in meas circs:
print('Measured counts:', c)
print(meas_res.get_counts(c)ﬂ

Measured counts: example mZZ
{'11': 517, '00': 507}
Measured counts: example mXX
{'11': 520, '00': 504}
Measured counts: example mYY
{'00"': 498, '11': 526}

63 ©2017 IBM Corporation 25 January 2018

'example mYY']

.||I

Explore QISKit
What next?

» Explore the QISKIit tutorial Jupyter notebooks. A good start are the ones in Section 2:

64

2. Exploring quantum information concepts

The next set of notebooks shows how you can explore some simple concepts of quantum information science.

Superposition and Entanglement - how to make simple quantum states on one and two qubits, and demonstrates concepts
such as quantum superpositions and entanglement.

Single-gubit States: Amplitude and Phase - discusses more complicated single-qubit states.

Single-qubit Quantum Random Access Coding - how superpositions of one-qubit quantum states can be used to encode
two and three bits into one qubit, and how measurements can be used to decode any one bit with a success probability of
more than half.

Two-qubit Quantum Random Access Coding - how superposition and entanglement can be used to encode seven bits of
information into two qubits, such that any one of seven bits can be recovered probabilistically.

Entanglement Revisited - the CHSH inequality, and extensions for three qubits (Mermin).

Quantum Teleportation - introduces quantum teleportation.

Quantum Superdense Coding - introduces the concept of superdense coding.

Quantum Fourier Transform - introduces the quantum Fourier transform.

Vaidman Detection Test - demonstrates interaction free measurement through the Vaidman bomb detection test.

©2017 IBM Corporation 25 January 2018

.||I

