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Abstract — New methods are introduced for 
two parties to exchange messages and to 
establish cryptographic keys without the need 
to distribute secret keys beforehand.  The 
methods rely on establishing a commutative 
family F of invertible square matrices over a 
non-commutative ring.  To exchange 
messages, the sender and receiver 
independently choose encryption matrices S 
and R from F.  The message vector is 
successively multiplied by S, R, S' and R'.  Due 
to the commutativity property, this recovers 
the original message.  For establishing 
cryptographic keys, a random vector V is 
chosen.  The sender transmits SV to the 
receiver, and the receiver transmits RV to the 
sender.  This lets both parties compute 
SRV=RSV, which is then used as the 
cryptographic key.
 The new matrix algorithm is about 2000 
times as fast as the current exponentiation 
method.   Likewise, it is thousands of times as 
fast as public key encryption based on 
exponentiation.

Index Terms—  commutative family, 
cryptography, decryption, encryption, key 
distribution, matrix, non-commutative ring, 
security, three-pass protocol

I.  INTRODUCTION

There is a story of a king who wished to 
send a valuable gift to a neighboring princess. 
He had an impregnable strongbox and a 
pickproof lock, but he could not send the key 
with the messenger, nor even with a second 
messenger for fear the two could join up along 
the route, open the box and steal the gift.  The 
solution was for the princess to add her own 
unpickable lock to the strongbox, and send it 
back.  Then the king removed his lock, and sent 
the box back with only her lock.
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This is the basic principle of Private Key 
Cryptography.  Each party has a private 
encryption key and its inverse decryption key, 
which are not known by or shared with any other 
party.  This contrasts with traditional Secret Key 
Cryptography where both correspondents share a 
secret key, and more recent Public Key 
Cryptography where each party has both a 
private decryption key and a public encryption 
key known to everyone.

The great advantage of Private Key 
Cryptography is that no infrastructure is 
required.  It needs no key distribution network, 
no trusted key authority, no key-encrypting 
master key.  Two parties who have made no prior 
arrangements, and who share no secret 
information, may establish secure 
communications over public channels using 
openly available hardware or software.

A.  Sending messages

Messages are sent using a 3-Pass Protocol 
[1,3].  It consists of the sender encrypting the 
message M with the sender’s private encryption 
key S, and transmitting this encrypted message 
SM to the receiver.  The receiver super-encrypts 
SM with the receiver’s private encryption key R, 
and sends this doubly-encrypted message RSM 
back to the sender.  The encryption functions are 
chosen so that they commute.  That is, 
RSM=SRM.  This allows the sender to decrypt 
RSM with the sender’s private decryption key S', 
leaving S'RSM=RM encrypted with only the 
receiver’s key.  This partly-decrypted message is 
sent back to the receiver.  The receiver decrypts 
the message with the receiver’s private 
decryption key R', thus obtaining the original 
unencrypted message R'RM=M.

B.  Establishing cryptographic keys

A similar method can be used to establish 
cryptographic keys.  The basic idea is for the 
sender to take a random message M and to 
encrypt it with the sender’s private encryption 
key S.  The message M and encrypted message 
SM are sent to the receiver.  The receiver 
encrypts M with the receiver’s private key R and 
sends RM back to the sender.  Again, the 
encryption functions S and R are chosen so that 
they commute.  This allows both the sender and 
receiver to obtain SRM=RSM which is used as 
the cryptographic key.

The encryption and decryption functions 
currently used are based on exponentiation.  This 
paper introduces new Private Key Encryption 



methods using the 3-Pass Protocol with commut-
ative matrices over a non-commutative ring.  The 
new matrix methods are typically 2000 times as 
fast as the old exponentiation method.

To show that this speed really can be 
achieved in practice, the following chapters will 
select a sample ring, determine how large the 
matrices must be to obtain the desired level of 
security, generate the matrices, and finally run a 
timing comparison against a commercial version 
of the exponentiation method.

II. EXPONENTIATION METHOD

The first commutative encryption [1] used 
exponentiation.  The message is treated as an 
integer M modulo a large prime p.  Encryption 
and decryption both consist of raising the integer 
M to a large power modulo p.  Let s and s' be the 
sender’s encryption and decryption exponents, 
and let r and r' be the receiver’s encryption and 
decryption exponents, with ss'≡rr'≡1(mod p-1). 
By Fermat’s theorem [2] Mss'≡Mrr'≡M(mod p). 
The sender transmits Ms(mod p) to the receiver, 
the receiver transmits (Ms)r≡Msr(mod p) back to 
the sender, the sender transmits 
(Msr)s'≡(Mss')r≡Mr(mod p) to the receiver, who 
decrypts it as Mrr'≡M(mod p).  This method is 
little-used in practice since raising a number to a 
large power modulo a large prime is such a slow 
operation.

The Massey-Omura method [3] achieves 
faster speed by using multiplication in a Galois 
Field GF(2m) instead of multiplying integers 
modulo a large prime.  This improves the speed, 
but the method still requires raising large 
numbers to large powers, so it is still slow.

The same methods were used for 
establishing keys [8,9].  A large prime p and a 
primitive root w of p are chosen beforehand.  To 
establish an encryption key the sender and 
receiver randomly choose exponents s and r in 
the range 2 to p-2.  The sender sends ws(mod p) 
to the receiver, and the receiver sends wr(mod p) 
to the sender.  Then the common value 
wrs≡wsr(mod p) is used as the cryptographic key.

The exponentiation method is believed to be 
as difficult to solve as the Discrete Logarithm 
Problem [7].

III. MATRIX METHODS

A message is a string of  characters over a 
finite alphabet.  For simplicity, we will assume 
that there is a one-to-one correspondence 
between the symbols of the alphabet and the 

elements of some non-commutative ring R.  That 
is, the alphabet and the ring were chosen to be 
the same size.  If not, then there would need to 
be extra steps to convert the message characters 
to ring elements, and back.  The message will be 
encrypted and decrypted in blocks of bc 
characters each, with each block treated as a b×c 
matrix over the ring R.  Let F be a large commut-
ative family of invertible b×b matrices over the 
ring R.  Such commutative families exist for 
every ring.  The best-known example is the 
family of diagonal matrices.  The following 
section will describe methods for producing 
other families.  It is expected that the choices for 
R and F would be built into the software package 
or hardware device.

For each block M of the message the sender 
randomly chooses an encryption matrix S from F 
and the receiver randomly chooses an encryption 
matrix R from F.  Left-side encryption matrices 
will be used in this paper, but right-side matrices 
are equally valid and equivalent.  Let the inverse 
matrices be S' and R'.  The sender will encrypt 
the message block M as SM and send this to the 
receiver  The receiver will super-encrypt the 
block as RSM and send this back to the sender. 
The sender will then remove the S encryption by 
S'RSM = S'SRM = RM and send this back to the 
receiver.  The receiver can then remove the 
remaining encryption by R'RM = M.

For establishing keys, the sender chooses a 
random message block M, usually a vector, and a 
matrix S from F and sends both M and SM to the 
receiver.  The receiver then computes RM and 
RSM and sends RM back to the sender.  The 
sender can now compute SRM = RSM which 
will be used as the cryptographic key.

This establishes that the matrix methods 
work.  What still must be shown is that the 
methods are practical and secure.  They will be 
practical only if it is feasible to find large 
commutative families of matrices.

A.  Commutative families of matrices

 The best-known commutative family of 
square matrices is the family of diagonal 
matrices.  If the diagonal elements are commuta-
tive, then the matrices will commute.  If every 
element on the diagonal is invertible, then the 
matrix will be invertible.  However, using 
diagonal matrices clearly will not lead to a 
secure encryption.  

Another well-known way to construct a 
commutative family of matrices is to choose an 
arbitrary invertible base matrix B and take its 
successive powers B, B2, B3, …  Since matrix 



multiplication is associative, this family of 
matrices is commutative.  Eventually Bk will 
equal I, the identity matrix, where k is the order 
of the matrix in the multiplicative group of 
matrices, so k is the size of the family.  A suitable 
choice of the base matrix can produce a very 
large commutative family.  (To avoid confusion, 
the order of a matrix will always refer to its 
multiplicative order; the number of rows and 
columns will be called the size of the matrix.)

A third way to construct a commutative 
family of matrices is to start with any invertible 
matrix A and solve the commutativity equation 
AM=MA.  When a solution is found, say B, then 
the simultaneous matrix equations AM=MA and 
BM=MB can be solved.  Any solution will 
commute with both A and B.  After just a few 
steps, the reduced row echelon form of the 
matrix equation will stabilize.  Adding additional 
commutativity conditions results in an equivalent 
matrix.  This final set of linear equations will 
generate a locally maximal commutative family 
of matrices by using back substitution.

Once one commutative family F has been 
found, additional families can easily be 
constructed.   If X is any invertible matrix, and A 
and B commute, then XAX' and XBX' commute. 
So XFX' = {XAX' : A∈F} is also a commutative 
family of the same cardinality.

IV. SECURITY

Let us now examine the new encryption 
method from the standpoint of an opponent who 
wishes to read an intercepted message.  It is 
safest to assume that the opponent has complete 
knowledge of the system, including knowing the 
ring R and the commutative family F, and that 
the opponent has intercepted all 3 transmissions, 
SM, RSM and RM.  Call these intercepted 
messages X, Y and Z.  The opponent can read the 
message by determining either S or R.  The 
easiest way to do that is from the relationships 
Y=RX and Z=S'Y.  For the key establishment 
protocol the known values of M, SM and RM are 
similarly used.

A.  Commutative ring

To motivate the discussion, consider what 
the opponent would do if the ring were 
commutative.  The matrix R contains b2 elements 
which are unknown to the opponent.  Since the 
opponent has intercepted X and Y, the 
relationship RX=Y provides bc equations in 
these b2 unknowns.  When c<b, this is not 
enough information to solve for the b2 

unknowns.  However, the opponent also knows 
that R is in the family F.  If the opponent chooses 
any matrix A from the family F, then AR=RA. 
This provides b2 linear equations in the b2 

unknowns in R.  This b2×b2 matrix will be called 
the commutativity matrix of F.  

These b2 equations are not linearly 
independent.  When the commutativity matrix is 
reduced by the standard method of Gaussian 
elimination, it will yield b(b-d) linearly 
independent equations, where d depends upon 
the choice of the ring R and the family F.  

When F is a maximal family, that is, F has 
maximum cardinality among all commutative 
families for R, and when the opponent has made 
a good choice for the matrix A, then d will be 1, 
and it will be easy for the opponent to solve for 
the matrix R.  The b(b-1) equations from 
RA=AR and the bc equations from RX=Y' are 
enough to solve for the b2 unknowns even when 
c is as small as 1.  This is sufficient for the 
opponent to recover M.  

The sender has two defenses against such an 
attack.  The first is to reduce the rank of the 
equation RA=AR, that is to increase the value of 
d.  The second is to decrease the rank of RX=Y.

When R is the ring of integers modulo a 
prime p, the maximum multiplicative order for 
an n×n matrix over R is pn-1.  Every maximal 
commutative family F of b×b matrices over R 
will have cardinality k=pb-1, and can be 
generated as the powers of some base matrix B, 
namely B, B2, B3, …, Bk=I.

 If b is composite, say b=fd, then the 
polynomial xb-1 can be factored as (xf-1) 
(xn-f+xn-2f+…+1).  If the base matrix B is replaced 
by the base matrix Bh where h=(xn-f+xn-2f+…+1), 
then the commutative family F* of matrices will 
have cardinality pf-1.  The commutativity matrix 
of F* will have rank b(b-d).  

It would seem like the sender could defeat 
the opponent by choosing F* as above, and using 
a message matrix of row rank r such that b(b-d)
+rc+c(c-e)<b2+c2, namely r<(bd+ce)/c.  Then the 
rank of the message matrix will be too low to 
permit the opponent to solve for the matrices R.  

Unfortunately, this does not work.  It is not 
necessary for the opponent to recover the 
original matrix R in order to read the message. 
Any matrix Q satisfying QA=AQ and QX=Y 
will allow the opponent to recover the message 
M.

The encryption is not secure using matrices 
over a commutative ring.



B.  Non-commutative ring

Next consider the situation when the ring R 
is not commutative.  The opponent begins the 
attack on the message as before.  The equations 
AR=RA and RX=Y still provide linear equations. 
Since linear equations are the easiest to solve, 
this is again the best starting point for the attack. 
The equations will now be of the form 
∑jAijRjk=∑jRijAjk.  The Aij are known constants 
from the chosen matrix A, while the Rij are the 
unknown elements from the receiver’s 
encryption matrix R.  Similarly for X and Y. 
Such equations are sometimes called bilinear. 
Since ring multiplication is not commutative, the 
terms on the left side and the terms on the right 
side of each equation usually cannot be 
combined.  At first, the problem looks 
intractable.  

The best approach is to convert the bilinear 
equations to linear equations.  This is called 
linearization.  The basic idea is to replace the 
unknowns Rij in the equations with an expanded 
set of unknowns [4] such that every term in the 
expanded set of equations can be written as sX, 
where s is a scalar element of R and X is one of 
the expanded set of unknowns.  In order to make 
this work, a new representation must be found 
for the elements of R.  Two such representations 
will be considered.

In the first representation, each element of R 
will be represented as a product sui where s is a 
commutative element of R and U={u1,u2,…,ug} 
is a set of generators for the elements of R, with 
u1=1 and the other generators non-commutative. 
In general, different sets of generators will have 
different cardinalities.  The representation of 
each scalar as sui is not unique.  It seems to be 
easy to find minimal generator sets.  Once U has 
been chosen, a term RijAjk can be replaced by 
Rijsuk for some s and uk.  Since s is commutative, 
Rijsuk=sRijuk.  This puts the scalar coefficient s to 
the left of the term Rijuk.  The set of b2g terms 
Rijuk will be the expanded set of unknowns.  The 
equations are now in linear form with this set of 
variables.

The second representation expresses each 
scalar in R as a sum a1v1+a2v2+…+ahvh where the 
ai are commutative elements of R and V={v1,v2,
…,vh} is a set of generators, with v1=1.  This 
representation is analogous to representing 
complex numbers in the form a+bi where a and b 
are real numbers and i is a generator.  As before, 
each of the commutative coefficients ai can be 
moved to the left in each term, making the 
equations linear in the expanded set of unknowns 
Rijvk and Q'ijvk.  

The advantage of the first representation is 
that each scalar is represented as a single term 
rather than a sum of terms.  This greatly 
simplifies the multiplication of scalars.  In the 
second representation a product contains h2 terms 
which must be combined.  However, h will 
normally be smaller than g, so that the second 
representation involves fewer equations in fewer 
unknowns.  Since the work involved in solving 
the set of equations is proportional to the number 
of equations times the square of the number of 
unknowns, the opponent may be expected to 
choose V instead of U.  

The change of representation gives b2+bc 
equations in b2h unknowns.  This is not enough 
to solve them.  The trick is to augment the set of 
equations by right-multiplying each equation by 
v2, v3, …, vh in turn.  The original equations plus 
the augmented equations form a set of (b2+bc)h 
equations in b2h unknowns. 

To make the encryption method secure, the 
legitimate correspondents must choose R, F and 
M so that these (b2+bc)h equations are not 
sufficient to solve for the b2h unknown entries in 
R.  This is done by making certain that the rank 
of the commutativity matrix is less than b2h.

Solving linear equations over a commutative 
ring is a routine process.  Solving linear 
equations over a non-commutative ring has long 
been known [10] to be a difficult problem. 
Many of the familiar properties of matrices no 
longer hold.  There are no eigenvalues or 
eigenvectors.  The value of the determinant 
changes if columns are added, subtracted or 
permuted.  Canonical decompositions don't 
work.

The concept of the rank of a matrix is not 
clearly defined for non-commutative rings.  It is 
not sufficient simply to reduce the matrix to row 
echelon form and count the rows.  To understand 
the problem better, it is useful to consider the 
ring of integers modulo 36.  The linear equation 
5x+7=0 has a unique solution, namely x=13. 
The equation gives complete information about 
x.  If the equation is multiplied by 2, giving 
10x+14=0 then there are 2 solutions, x=13 and 
x=31.  The equation is weaker in the sense that it 
gives less information about x.  If the equation is 
multiplied by 9 it becomes 9x+27=0, and has 9 
solutions.  This very weak equation gives much 
less information about x.

Similarly for linear equations over R.  Some 
equations give more information than others, and 
2 or 3 equations do not necessarily give more 
information than a single equation, even when 
they are linearly independent.

There are several different definitions of 



rank in the literature, and it is not always clear 
how to calculate them.  For this study, the rank 
of the commutativity matrix was defined in 
terms of the original b2 unknowns, rather than 
the b2h extended unknowns, and seemed to work 
well.  That is, it was a reasonable indicator of the 
number of solutions to the set of equations.

There is no simple way to characterize a 
non-commutative ring, therefore there is no 
simple way to express the conditions that lead to 
a particular rank for the commutativity matrix of 
the family F.

In order to obtain numeric results that could 
be used to estimate how large the matrices need 
to be, and thus be able to compare running times 
to the existing exponentiation method, it was 
decided to construct a ring that was tailored to 
this encryption scheme.  The ring needed to 
possess a number of desirable properties:  the 
maximum order for a ring element should be as 
large as possible, there should be as many 
maximum-order elements as possible, there 
should be as many invertible elements as 
possible, and there should be as few 
commutative elements as possible.  The ideal 
size for the ring would be 256 elements, since 
that would eliminate any conversion steps from 
characters of the message to ring elements and 
back.  This gives a ring multiplication table of 
65,536 bytes, which is practical even for single-
chip devices.

None of the classical examples of non-
commutative rings, such as matrices and 
quaternions, seemed to possess this combination 
of traits.  A computer search produced a large 
number of suitable 256-element rings that strike 
various compromises among these conflicting 
goals.  The ring M256 that was chosen has 62 
invertible elements, 64 commutative elements, 
and 31 elements that are both invertible and 
commutative.  It has 30 elements of order 62 and 
30 elements of order 31.  For the U representa-
tion g=7, and for the V representation h=3.

Commutative families F of n×n square 
matrices over R=M256 were generated for n=2 
through n=20 and n=29.  For n=2 to 9, and for 11 
and 13, it is probable that the families have the 
maximum cardinality.  For other values of n it is 
likely that the families are sub-maximal.  Larger 
families may exist than those which were found. 
Express the maximum cardinality found as q(n)n. 
Then q(n) was greater than 100 for n=5 and for 
n≥8, with the smallest value being 102.01 for 
n=8 and the largest being 122.35 for n=17.

Subfamilies of these maximal families were 
generated by using powers of the base matrix. 
The rank of the commutativity matrix for F was 

found empirically to be n(n-1) when the 
cardinality of F evenly divided 32n-1, and n2 

otherwise.  In both cases, for matrices of a 
practical size it was found that the opponent 
could solve the equations and recover the 
message too often to be truly secure.

This was the wrong way to construct the 
family of matrices.

During the search for matrices of maximal 
order, thousands of matrices of lower order are 
generated, tested, and then discarded.  It was 
discovered that when some of these lower-order 
matrices are used to generate the family F the 
commutativity equations are not linearly 
independent, and a large number of trials are 
required for the opponent to solve them. 

This was the right way to construct the 
family of matrices.  Discard both the front-
runners and the stragglers, and use the matrices 
from the middle of the pack. 

Suitable lower-order matrices can be found 
with a small number of trials.  It is conjectured 
that if the lower-order matrix is part of a 
maximal family, then the equations will be 
linearly independent, otherwise they will have 
lower rank, however we know of no way to test 
this conjecture.

V. EXPERIMENTAL RESULTS

To test the security of this method, and to 
evaluate how large the matrices must be to 
achieve the desired level of security, a series of 
experiments was run.  For each matrix size b×b a 
commutative family of matrices was chosen. 
100 matrices were randomly chosen from the 
family, and used to encrypt a randomly chosen 
b×1 message block.  

The set of linear equations was generated 
and augmented.  Over the non-commutative ring 
it is not possible to reduce these equations to row 
echelon form, but an approximation of row 
echelon form can be obtained using a few simple 
techniques, such as using pseudo-inverses and 
looking for invertible linear combinations of 
elements in the active column.  Once the reduced 
form is obtained, solutions can be obtained by a 
combination of back substitution and back-
tracking.

To illustrate these techniques, recall the ring 
of integers modulo 36.  Suppose one row 
contains 14x+8y+20=0 and another row contains 
6x+11y+3=0.  Neither 14 nor 6 is invertible, but 
multiplying the first row by 15 and adding it to 
the second row gives 23y+15=0, which 
eliminates the x term.  Similarly, if one row 
contains 4x+10y+19=0 and another row contains 



9x+31y+8=0, neither 4 nor 9 is invertible, but 
their sum is 13, which is invertible.  Here 15 was 
a pseudo-inverse and 4+9 was a linear 
combination.  These techniques also work in the 
M256 ring. 

During the back substitution, some choices 
of values will result in impossible conditions at 
later stages, such as 8x+7=0.  This requires back-
tracking to resolve the impasse.  To keep the 
execution times of the tests within reasonable 
bounds, a test case was halted if more than 108 

sets of values were tried without finding any 
solution.  At that point the program calculated 
what fraction of the value space had been tried, 
and then extrapolated the number of trial values 
needed to search the entire value space.  It is 
understood that searching only 108 sets of values 
in a value space of size 256121 or 256256 will give 
only a crude approximation, but by comparing 
the figures for various matrix sizes a clear trend 
emerges. 

The results of these tests are shown in 
Table 1.  The ranks given are the ranks of the 
approximate row echelon matrices, stated in 
terms of the original b2 unknowns, not the 3b2 

augmented unknowns.  These values can be 
compared to b2 to get a sense of how close the 
equations come to linear independence.

The figures for the work are the logarithms 
of the estimated number of trials needed, taken 
to the base 2.  That way, the figures can be 
directly compared to the desired target figure of 
128, which is the current standard for security.

For each statistic, the minimum, mean and 
maximum over 100 trials are given.  For the 
work, it is the minimum figure that is of critical 
interest, because if that figure is 128 or less, or 
even close to 128, then an opponent could 
potentially solve some blocks of the messages, or 

compute some of the keys.  Unless this is a 
negligible fraction, the method cannot be 
considered secure.  It can be seen from Table 1 
that the method begins to become acceptably 
secure at about 17×17.  

Another important consideration for security 
is the size of the matrix family F.  If the family is 
too small, then the opponent could simply try the 
matrices sequentially.  Recall that the size of the 
matrix family is 32b-1, or about 25b.  In order to 
be secure b should be at least 25 or 26.  The 
value b=29 is suggested because 3229-1 is 
divisible by a large prime, namely 2679 89515 
77838 62814 69002 74941 44991. 

The work needed to solve the equations for a 
29×29 encryption matrix far exceed the desired 
level of 2128 trials.  This suggests that each 29×29 
matrix can be used to encrypt more than one 29-
character message block.  This is of practical 
importance since the time to generate the 
encryption matrices is greater than the time to 
perform the encryption.  A new set of 
experiments was performed to test this 
possibility.  

The results of these experiments are shown 
in Table 2.  It can quickly be seen that it is safe to 
use each matrix for up to 5 message blocks, but 
unsafe for 6 message blocks.  There is a sharp 
cutoff.  In fact 74% of the 6-block messages 
were solved.

A few words of explanation may be needed 
about some seeming oddities in the results.  Most 
of the figures for the minimum work end with .
58.  At first this was thought to be a consequence 
of log23=1.58, but investigation showed that it 
was because log2108=26.58.  It also seemed 
anomalous that the rank of the equation sets for 

Table 1.  Work required to solve the equations for an N×1 message block encrypted by an N×N matrix. 
Size is the encryption matrix size.  Rank is the rank of the combined set of equations in terms of the 
original N2 variables.  Work is log2 of the estimated number of values which must be tried to obtain a 
solution.  For each measure, the minimum, mean and maximum values are given.

Matrix
Size

Rank Work

Min Mean Max Min Mean Max

11x11 104 107.55 110  66.58 102.93 111.77
12x12 118 123.91 129  74.58 111.44 118.99
13x13 126 134.62 139  66.58 118.93 130.58
14x14 155 162.37 168  82.58 126.72 135.25
15x15 168 178.34 186 104.01 134.75 146.58
16x16 196 204.96 213 122.58 143.72 151.41
29x29 618 629.75 640 217.58 253.03 483.90



Table 2.  Work required to solve the equations for an 29×C message block encrypted by an 29×29 matrix. 
Size is the message matrix size.  Rank is the rank of the combined set of equations in terms of the original 
N2 variables.  Work is log2 of the estimated number of values which must be tried to obtain a solution.  For 
each measure, the minimum, mean and maximum values are given.

the 29×c message blocks increased by more than 
29 each time c increased by 1.  The reason for 
this is that in the set of augmented equations 
each increment of c adds not 29 but 87 additional 
equations. 

Using 29×29 matrices over the M256 ring is 
just one example, of course, but it demonstrates 
both the feasibility and practicality of the matrix 
technique.

VI. INCREASING SECURITY

There are several enhancements available to 
increase the security of the matrix method at a 
very low computational cost.  For a message of n 
blocks, the number of encryption matrices 
required by both sender and receiver would be 
n/5.  Instead of simply encrypting the first 5 
blocks with the first matrix, the next 5 blocks 
with the second matrix, and so forth, the parties 
could generate all n/5 matrices beforehand, and 
then choose randomly among them for each 
block.  After a matrix has been used 5 times, it 
would be discarded.

Since that would require a large amount of 
storage for a long message, a smaller number of 
matrices, say 10 to 20, could be generated at the 
outset.  One of these would be chosen at random 
for each block.  After a matrix was used 5 times, 
it would be replaced by a new matrix.  The 
replacement could stop once n/5 matrices had 
been generated.

A second method is to choose a random 
multiplier for each block.  The multiplier would 
need to be an invertible and commutative 
element of the ring.  There are 31 such elements 
in M256.  This method can be combined with the 

previous method.
Conversely, if the parties decided to encrypt 

the message 5 blocks at a time, the message 
could be treated as a sequence of larger 29×5 
blocks.  Each block could be left-multiplied by 
the 29×29 matrix and right-multiplied by an 
independent 5×5 matrix chosen from a 
commutative family G of invertible 5×5 
matrices.  The right-side matrices are applied and 
removed the same way as the left side matrices. 
The 3 transmitted messages would then be SMT, 
RSMTQ, and S'RSMTQT'=RMQ.  Maximal 
commutative families of 5×5 matrices over 
M256 contain about 1.4×1010 members.  The 
extra cost of generating the 5x5 matrices adds 
less than 3% to the encryption time and storage 
requirements.

None of these enhanced methods are needed 
for key exchange, since only one block is used 
for each key.

VII.  AUTHENTICATION

Thus far it was assumed that an 
eavesdropper listened passively.  That is, the 
eavesdropper could read messages, but could not 
create, alter or delete messages.  There is no 
defense in any system of cryptography against 
deleted messages, beyond detecting the deletion. 

 There are many schemes for authenticating 
that the message you received is from the person 
you intended [5,6].  No scheme is failure-proof. 
Every scheme can be defeated by some 
combination of wiretapping, key-logging, 
burglary, bribery or coercion.  When the 
opponent controls every channel of access, 
Internet, LAN, phone, mail, broadcast and even 

Message
Size

Rank Work

Min Mean Max Min Mean Max

29x1 618 629.75 640 217.58 253.03 483.90
29x2 660 678.55 694 210.58 238.29 249.22
29x3 702 725.30 740 178.58 227.31 242.56
29x4 738 768.72 785 178.58 220.40 238.16
29x5 784 806.63 817 184.01 212.12 224.50
29x6 820 839.16 841  16.00  29.29 176.01



bonded messenger, there is no defense.
That said, the best way to authenticate 

messages is through the use of secret information 
known to sender and receiver.  For example, the 
shared secret information may be combined with 
a hashed digest of the message in an irreversible 
way.  This violates the spirit of No Key 
Exchange, but it is the best method available.

VIII.  RESULTS

Using the methods just described, two 
commutative families of 29×29 matrices and 5×5 
matrices over a non-commutative ring M256 of 
256 elements were constructed, and used to 
encrypt a message of 5,000,000 characters.  The 
same message was also encrypted and decrypted 
using a commercial implementation of the 
Shamir 3-Pass Protocol [1] called NK-Crypt 
which uses exponentiation modulo a 244-digit 
prime.  The encryption using NK-Crypt took 9 
hours 53 minutes, while the matrix encryption 
took 16.7 seconds, about 2100 times as fast. 
These times include disk I/O and key generation.

This ratio depends on the size of the prime, 
the method used for multiplying large numbers 
and the method of exponentiation, as well as the 
size of the matrices and the method for 
generating the key matrices for each block of the 
message, however, it is safe to say that the new 
matrix method represents more than a 1000-fold 
improvement over the prior art.

Until now, private key cryptography using 
the 3-pass protocol was considered too slow to 
be used for transmitting anything larger than 
encryption keys.  Since the new matrix method is 
about 3 orders of magnitude faster, it becomes 
practical to send entire messages as well as 
exchanging keys.

Private key encryption using matrices is also 
at least 1000 times as fast as public key 
encryption using exponentiation, so whenever 
speed is important, private key cryptography 
would now become the preferred method.
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